Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 315(5): F1385-F1397, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29993277

RESUMO

The key to success in developing a wearable dialysis device is a technique to safely and efficiently regenerate and reuse a small volume of dialysate in a closed-loop system. In a hemodialysis model in goats, we explored whether urea removal by electro-oxidation (EO) could be effectively and safely applied in vivo. A miniature dialysis device was built, containing 1 or 2 "EO units," each with 10 graphite electrodes, with a cumulative electrode surface of 585 cm2 per unit. The units also contained poly(styrene-divinylbenzene) sulfonate beads, FeOOH beads, and activated carbon for respective potassium, phosphate, and chlorine removal. Urea, potassium, and phosphate were infused to create "uremic" conditions. Urea removal was dependent on total electrode surface area [removal of 8 mmol/h (SD 1) and 16 mmol/h (SD 2) and clearance of 12 ml/min (SD 1) and 20 ml/min (SD 3) with 1 and 2 EO units, respectively] and plasma urea concentration but not on flow rate. Extrapolating urea removal with 2 EO units to 24 h would suffice to remove daily urea production, but for intermittent dialysis, additional units would be required. EO had practically no effects on potassium and phosphate removal or electrolyte balance. However, slight ammonium releasewas observed, and some chlorine release at higher dialysate flow rates. Minor effects on acid-base balance were observed, possibly partly due to infusion of chloride. Mild hemolysis occurred, which seemed related to urea infusion. In conclusion, clinically relevant urea removal was achieved in vivo by electro-oxidation. Efficacy and safety testing in a large-animal model with uremia is now indicated.


Assuntos
Soluções para Diálise/metabolismo , Diálise Renal/instrumentação , Ureia/sangue , Uremia/terapia , Dispositivos Eletrônicos Vestíveis , Equilíbrio Ácido-Base , Desequilíbrio Ácido-Base/etiologia , Desequilíbrio Ácido-Base/fisiopatologia , Animais , Creatinina/sangue , Modelos Animais de Doenças , Desenho de Equipamento , Cabras , Hemólise , Miniaturização , Modelos Biológicos , Oxirredução , Fosfatos/sangue , Potássio/sangue , Diálise Renal/efeitos adversos , Fatores de Tempo , Uremia/sangue , Uremia/fisiopatologia , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...